Insights from stable isotope dynamics into the sensitivity of larval Pacific oysters to ocean acidification

Larvae of the Pacific Oyster, Crassostrea gigas, at Whiskey Creek Shellfish Hatchery (WCH) in Netarts Bay, Oregon, are negatively impacted by high-CO₂ water and exposure during the initial shell formation period appears to be particularly damaging. To investigate the mechanism of this early susceptibility, several cohorts of larvae at WCH were monitored for stable isotope incorporation and biochemical composition: one in May 2011 and two in August 2011. The observations presented here focus on the isotopic shifts associated with initiation and rate of feeding, and the catabolism of C-rich (lipid) and N-rich (protein) pools. Persistent ontological patterns in bulk composition among the cohorts suggest that the creation of the initial shell is energetically expensive, and that the major energetic source during this period is maternally-derived egg lipids. The May cohort did not isotopically reflect their food source as rapidly as the August cohorts, indicating slower feeding, higher metabolic demand or lower maternal energy investments. All cohorts turned over organic carbon faster than organic nitrogen. Shell carbon isotopes of all cohorts show a decreasing dependence on ambient dissolved inorganic carbon (DIC) carbon with time and subtle differences in this trend between the May and August cohorts are explored. Patterns in shell δ¹³C suggest greater exposure to ambient conditions during initial shell development, which could be an important process linking ambient carbonate chemistry and larval susceptibility. Scanning electron microscopy (SEM) images are used to document the initial shell formation. Kinetic isotope fractionation, dissolved organic matter (DOM) utilization, and the dissolvability of shell microstructures are also briefly considered in the context of larval susceptibility.

Brunner E. L., 2013. Insights from stable isotope dynamics into the sensitivity of larval Pacific oysters to ocean acidification. MSc thesis, Oregon State University. Thesis (restricted access).

0 Responses to “Insights from stable isotope dynamics into the sensitivity of larval Pacific oysters to ocean acidification”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 790,579 hits

Ocean acidification in the IPCC AR5 WG II

OUP book


Follow

Get every new post delivered to your Inbox.

Join 993 other followers