The influence of food supply on the response of Olympia oyster larvae to ocean acidification

Increases in atmospheric carbon dioxide drive accompanying changes in the marine carbonate system as carbon dioxide (CO2) enters seawater and alters its pH (termed “ocean acidification”). However, such changes do not occur in isolation, and other environmental factors have the potential to modulate the consequences of altered ocean chemistry. Given that physiological mechanisms used by organisms to confront acidification can be energetically costly, we explored the potential for food supply to influence the response of Olympia oyster (Ostrea lurida) larvae to ocean acidification. In laboratory experiments, we reared oyster larvae under a factorial combination of pCO2 and food level. High food availability offset the negative consequences of elevated pCO2 on larval shell growth and total dry weight. Low food availability, in contrast, exacerbated these impacts. In both cases, effects of food and pCO2 interacted additively rather than synergistically, indicating that they operated independently. Despite the potential for abundant resources to counteract the consequences of ocean acidification, impacts were never completely negated, suggesting that even under conditions of enhanced primary production and elevated food availability, impacts of ocean acidification may still accrue in some consumers.

Hettinger A., Sanford E., Hill T. M., Hosfelt J. D., Russell A. D. & Gaylord B., 2013. The influence of food supply on the response of Olympia oyster larvae to ocean acidification. Biogeosciences Discussions 10: 5781-5802. Article.

0 Responses to “The influence of food supply on the response of Olympia oyster larvae to ocean acidification”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 790,579 hits

Ocean acidification in the IPCC AR5 WG II

OUP book


Follow

Get every new post delivered to your Inbox.

Join 993 other followers