Effects of elevated CO2 on the reproduction of two calanoid copepods

Some planktonic groups suffer negative effects from ocean acidification (OA), although copepods might be less sensitive. We investigated the effect of predicted CO2 levels (range 480–750 ppm), on egg production and hatching success of two copepod species, Centropages typicus and Temora longicornis. In these short-term incubations there was no significant effect of high CO2 on these parameters. Additionally a very high CO2 treatment, (CO2 = 9830 ppm), representative of carbon capture and storage scenarios, resulted in a reduction of egg production rate and hatching success of C. typicus, but not T. longicornis. In conclusion, reproduction of C. typicus was more sensitive to acute elevated seawater CO2 than that of T. longicornis, but neither species was affected by exposure to CO2 levels predicted for the year 2100. The duration and seasonal timing of exposures to high pCO2, however, might have a significant effect on the reproduction success of calanoid copepods.


McConville K., Halsband C., Fileman E. S., Somerfield P. J., Findlay H. S. Spicer J. I., in press. Effects of elevated CO2 on the reproduction of two calanoid copepods. Marine Pollution Bulletin. Article (subscription required).

0 Responses to “Effects of elevated CO2 on the reproduction of two calanoid copepods”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 725,458 hits

Ocean acidification in the IPCC AR5 WG II

OUP book


Follow

Get every new post delivered to your Inbox.

Join 823 other followers