Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata

Marine organisms inhabiting environments where pCO2/pH varies naturally are suggested to be relatively resilient to future ocean acidification. To test this hypothesis, the effect of elevated pCO2 was investigated in the articulated coralline red alga Corallina elongata from an intertidal rock pool on the north coast of Brittany (France), where pCO2 naturally varied daily between 70 and 1000 μatm. Metabolism was measured on algae in the laboratory after they had been grown for 3 weeks at pCO2 concentrations of 380, 550, 750 and 1000 μatm. Net and gross primary production, respiration and calcification rates were assessed by measurements of oxygen and total alkalinity fluxes using incubation chambers in the light and dark. Calcite mol % Mg/Ca (mMg/Ca) was analysed in the tips, branches and basal parts of the fronds, as well as in new skeletal structures produced by the algae in the different pCO2 treatments. Respiration, gross primary production and calcification in light and dark were not significantly affected by increased pCO2. Algae grown under elevated pCO2 (550, 750 and 1000 μatm) formed fewer new structures and produced calcite with a lower mMg/Ca ratio relative to those grown under 380 μatm. This study supports the assumption that C. elongata from a tidal pool, where pCO2 fluctuates over diel and seasonal cycles, is relatively robust to elevated pCO2 compared to other recently investigated coralline algae.

Egilsdottir H., Noisette F., Noël L. M.-L. J., Olafsson J. & Martin S., in press. Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Marine Biology. Article (subscription required).


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading