Ecological aspects of marine Vibrio bacteria – exploring relationships to other organisms and a changing environment

Heterotrophic bacteria of the genus Vibrio are indigenous in the marine environment although environmental cues regulate their growth and distribution. The attention brought to this genus is due to its many species/strains that are pathogenic to humans and other organisms. Vibrio abundances are strongly coupled to water temperature and salinity but abundance dynamics occur even where these hydrographical parameters are stable. In this thesis, I have studied Vibrio dynamics in relation to other organisms such as phytoplankton (papers I, II and III) and a bivalve host-organism (paper IV) in a changing environment where increasing temperature (paper III) and ocean acidification (paper IV) may influence survival and proliferation of these bacteria. In particular paper I showed that in a tropical coastal area, where the water temperature and salinity were stable across seasons, abundances of Vibrio were tightly coupled to phytoplankton biomass and community composition. A diatom bloom during December seemed to support high numbers of vibrios in waters with otherwise low levels of dissolved organic carbon. Paper II further supports that some phytoplankton can favor Vibrio growth while others seem to have a negative influence on Vibrio abundances. For instance, Skeletonema tropicum, a common diatom in Indian coastal waters, easily eradicated Vibrio parahaemolyticus from sea water in our experiments. In temperate marine areas culturable Vibrio predominantly occurs in the water column during the warmer months. Sediments are suggested to be potential reservoirs when conditions in the water-column are harsh. Accordingly, in paper III we showed that cold-water sediments from geographically separate areas in a boreal region of Scandinavia all contained relative high abundances of total Vibrio spp. and that all sediments also included culturable Vibrio. In agreement with paper I, the fresh input of organic material from phytoplankton blooms, for which chlorophyll a was used as a proxy, seemed to positively influence Vibrio abundances also in the sediments (paper III). Therefore, the pelagic-benthic coupling which can supply the sediments with biomass from the primary production could influence the abundance of Vibrio spp. Increasing temperature had variable influence on sediment-associated Vibrio abundance, with a significant increase in abundances in sediments originating from one area when the temperature reached over 21°C and a generally negative influence of increasing temperature on abundances in sediments originating from another area (paper III). This suggests that the sediments contained different Vibrio communities with varying temperature tolerance traits. Rising levels of carbon dioxide in the atmosphere does not only lead to higher water temperature through the green house effect, but also to acidification of the oceans. Paper IV illustrated how a common bivalve pathogen, Vibrio tubiashii, can be favored in the interaction with a calcifying bivalve host, Mytilus edulis, when this host-pathogen combination was exposed to levels of ocean acidification projected to occur by the end of the 21st century. Thus, global environmental changes may enhance the probability of Vibrio infections in higher organisms.

Asplund M. E., 2013. Ecological aspects of marine Vibrio bacteria – Exploring relationships to other organisms and a changing environment. PhD thesis, University of Gothenburg. Thesis.

0 Responses to “Ecological aspects of marine Vibrio bacteria – exploring relationships to other organisms and a changing environment”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 771,632 hits

Ocean acidification in the IPCC AR5 WG II

OUP book


Follow

Get every new post delivered to your Inbox.

Join 952 other followers