Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions

Coral reef ecosystems develop best in high-flow environments but their fragile frameworks are also vulnerable to high wave energy. Wave-resistant algal rims, predominantly made up of the crustose coralline algae (CCA) Porolithon onkodes and P. pachydermum1, 2, are therefore critical structural elements for the survival of many shallow coral reefs. Concerns are growing about the susceptibility of CCA to ocean acidification because CCA Mg-calcite skeletons are more susceptible to dissolution under low pH conditions than coral aragonite skeletons3. However, the recent discovery4 of dolomite (Mg0.5Ca0.5(CO3)), a stable carbonate5, in P. onkodes cells necessitates a reappraisal of the impacts of ocean acidification on these CCA. Here we show, using a dissolution experiment, that dried dolomite-rich CCA have 6–10 times lower rates of dissolution than predominantly Mg-calcite CCA in both high-CO2 (~ 700 ppm) and control (~ 380 ppm) environments, respectively. We reveal this stabilizing mechanism to be a combination of reduced porosity due to dolomite infilling and selective dissolution of other carbonate minerals. Physical break-up proceeds by dissolution of Mg-calcite walls until the dolomitized cell eventually drops out intact. Dolomite-rich CCA frameworks are common in shallow coral reefs globally and our results suggest that it is likely that they will continue to provide protection and stability for coral reef frameworks as CO2 rises.

Nash M. C., Opdyke B. N., Troitzsch U., Russell B. D., Adey W. H., Kato A., Diaz-Pulido G., Brent C., Gardner M., Prichard J. & Kline D. I., in press. Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nature Climate Change. Article (subscription required).

0 Responses to “Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 760,338 hits

Ocean acidification in the IPCC AR5 WG II

OUP book


Follow

Get every new post delivered to your Inbox.

Join 936 other followers